浅谈舰船交流电网绝缘监测及故障定位的研究及产品选型

来源:米乐app体育下载 日期:2024-05-18 02:57:10

  :交流电网和电气设备的绝缘状况直接影响舰船电力系统安全,其绝缘电阻的下降是一个不可避免的过程,成为了电网安全的严重隐患。电气设备在允许电压下不导电的材料的劣化过程是不可逆的,对舰船交流电网进行绝缘在线监测及快速定位绝缘故障支路,对保障舰船电力系统的安全及航行安全具备极其重大意义。

  舰船交流电网是船舶的大动脉,直接影响舰船的生命力及执行力。舰船环境条件较为恶劣,电网的绝缘易受损害,给舰船电气设备的正常运行带来隐患。如果舰船电网绝缘缺乏有效的监测手段,绝缘状况将会持续恶化,造成供电系统故障或控制功能紊乱,尤其是在进出港或航行于危险航道时,酿成安全事故。因此,建立有效的舰船交流电网绝缘监测系统,及时消除安全隐患,对保障舰船安全尤为重要。

  舰船交流电网绝缘缺陷可分为两种:一种是分布性缺陷;另一种是集中性缺陷。一般而言,分布性缺陷的产生基本是因为过热、受潮、动力负荷以及长时间过电压的工作环境而造成机电设施整体绝缘性能直线下降。这种缺陷产生过程缓慢,但却具有普遍性;集中性缺陷主要是指绝缘缺陷集中于某一个或某几个部分或区域,如区域局部受潮、设备局部机械损伤等,这种缺陷发展快,因而危险性大。

  舰船及其设备正常运行环境恶劣,长时间运行于高盐、高温、高湿和油雾的海洋环境中,在这样的环境条件下霉菌容易大量繁殖,造成在允许电压下不导电的材料性能变差,甚至会使绝缘失效;在允许电压下不导电的材料表面对潮气的吸附,引起绝缘材料表面积聚粉尘、水蒸汽,在水和电场的作用下产生放电,破坏绝缘材料表面;而空气中的水分、氧气、化学尘埃和阳光辐射,会加速电气设备绝缘材料表面老化。

  舰船电气设备所处的工作环境普遍较差,机舱安装设备众多,正常航行时机舱温度高达45℃~50℃甚至更高,加上内部工作舱室通风不畅,在这样的环境下电气设备绝缘性能直线下降尤为严重;另一方面,舰船在大风浪中航行时,船体持续地摇摆、倾斜,甚至遭受海浪的猛烈冲击,船内设备也随之遭遇不同程度的震动。舰船内的主机、辅机和其他各种机械设备在正常运行中也不可避免地会产生不同程度的震动,因此导致机电设施及船上各种电缆都受到持续的冲击、震动,因而产生各种弯曲、拉伸、扭转、摩擦等物理形变,使在允许电压下不导电的材料遭到不断磨损和破坏。

  电气设备主要由绝缘材料以及各种导电、导磁材料构成,其中绝缘材料大部分为有机材料,通过氧化聚合、分解、挥发等一系列的化学反应而制成。在这样的一个过程中,在允许电压下不导电的材料变脆、介质损耗增加、吸潮性增大、电导增大,从而引起绝缘材料电气性能产生不可逆的转化。电气设备的绝缘性能受自身条件和外因影响,总体呈现不断下降、劣化的趋势。

  在电气设备制造、长途运输及装卸、运行等过程中,电气设备的绝缘性能不可避免地会产生各种缺陷。在正常工作中,电气设备在允许电压下不导电的材料受电磁场作用,绝缘性能直线下降:材料的电荷分布不均匀,电容率变大,绝缘性能变差;绝缘材料在直流电场下产生漏电流,电导率增大;电荷在电场中产生运动,不论是前后、左右的移动还是转向,均需从电场中吸收能量,使自身的热振动加剧,引起发热而加速绝缘老化。因此,电气设备的正常工作过程也是一个自身绝缘性能不断下降的过程,当绝缘性能直线下降到某一临界点时,如果绝缘材料的局部电导飞速增加,就非常有可能在薄弱的一点或几点发生击穿,致使电气设备失去绝缘特性。

  舰船电网的安全运行是舰船安全航行的基础。在舰船航行过程中,船舶设备处于长期工作状态,由于温度、湿度、电压和频率一直在变化而引起的发热、损耗,以及机械振动等因素都直接影响着绝缘电阻的高低,绝缘电阻随温度、湿度的升高而下降。绝缘性能的不断降低,严重威胁着舰船的航行安全,因此绝缘监测设备已成为舰船必备的设备。

  根据图1所示的绝缘电阻测量基本原理,可相应地作出一个在线进行绝缘监测的技术方案,进而制造出绝缘监测仪。绝缘监测仪从电网取得交流电源,经过整流、滤波、稳压得到一个稳定的直流电压,再将此电压加入到相、地之间,就可以实现测量该交流电网的对地绝缘电阻;如果测得的绝缘电阻达到预先设定的某个数值时,监测仪马上发出报警信号至报警装置,驱动报警电路进行声光报警,以此来实现电网绝缘监测报警的功能。

  根据绝缘电阻测量基本原理制造的绝缘监测装置,成本低、简单实用,同时还满足了船级社关于舰船电网绝缘监测方面的有关要求,因此得到了广泛的应用。但该型绝缘监测仪只是监测了整个电网的绝缘状态,当整船电力网络出现绝缘值低于设定值时,绝缘监测即可实时发出绝缘报警,但却无法准确判断绝缘故障的具置,这将会极度影响舰船的正常航行。

  支路断电法是从配电板开始,依次断开主配电板的各个开关,首先排查从主配电板引出的各支路,确认无误后再循着该支路依次断开各个分电箱的电源,定位具体故障的分电箱,再从故障分电箱定位具体的故障线路及设备。由于支路断电法工作繁琐,而且在检查过程中甚至会影响到主辅机的正常运行,因此研究一种更高效的故障支路查找及定位方法势在必行。

  定位绝缘故障支路时,综合使用双频法与漏电流幅相比较法的混合测量方法较为有效:在检测到电力网络绝缘低于预设置值时,启动定位程序,优先启用漏电流幅相比较法,检查是不是存在支路单相绝缘降低的故障;当使用漏电流幅相比较法没检验测试到故障支路时,则有可能出现两相或三相绝缘同时降低的故障,在此情况下采用双频法进行故障支路检测。因此,采用混合测量法可实现故障支路的准确定位。

  现代舰船三相交流电力系统基本采用中性点不接地的方式,电力网络在实际运行过程中,电气设备单相对地绝缘故障是最常见的电力网络故障。随着舰船电站容量的不断增大和用电设备的增多,设备接地电容和网络分布电容随之增大,因此当某个负载支路发生单相对地绝缘故障时,同处一个供电区域的其它各负载支路都会产生一定的对地泄漏电流,利用负载支路发生单相对地绝缘故障时各支路漏电流的幅相特性,即可进行故障支路的定位。

  根据舰船实际使用情况,设定绝缘报警值,监测装置在正常运行过程中按照一定的采样周期对各支路进行信号采样;CPU板根据设定的程序,自动计算各供电支路对地绝缘电阻值;当计算得到的电网绝缘电阻低于预设值时,装置驱动声光报警电路发出报警信号,启动故障定位程序,根据幅相比较法或双频法对各支路做准确定位,然后将故障支路的相关信息发送至显示板,以此来实现交流电网的绝缘监测与故障支路定位功能。

  定位故障支路、提高船员排除电网绝缘故障效率,能够有效地保障舰船电力系统供电安全。在平时将存储每条支路的绝缘电阻测量值,经过一段时间的数据积累,船员可通过一系列分析得到各支路绝缘状态的变化趋势,并在平常维护保养中对绝缘性能直线下降较快的设备作为重点对象加强维护保养,延缓其下降趋势,在其出现故障之前排除一些故障或进行修换,避免在舰船航行中出现故障,保证航行安全。



上一篇:中国电力新闻网
下一篇:安科瑞直流绝缘监测仪使用与选型